
Introduction

Interest in the prediction of certain physico-chemical
properties has grown during the last 10 years. Predic-
tion of some properties is especially valuable when
experimental determination is difficult or impossible.
This concerns drug substances as well as substances
included in the formulation. The calculation of some
properties before synthesis would be desirable in the
drug discovery phase. Elimination of compounds that
are likely to possess very unfavourable physico-
chemical properties is possible.

Various physicochemical properties were pre-
dicted from the molecular structure, such as dielectric
constants [1], boiling point [2, 3], heat capacity [4],
thermal decomposition [5–7], �G and �H of forma-
tion [8], critical temperature and critical pressure [9],
enthalpy of sublimation [10], etc. Many papers de-
scribe ANN and MLR models trained in parallel using
the same descriptors and compound sets. Some com-
parisons have been published, for instance for
logPoct [11, 12], boiling point [13], critical tempera-
ture and critical pressure [14]. The main advantage of
artificial neural network modelling is that a non-linear
relationship can be modelled without any assump-
tions; on the contrary, MLR models assume a linear
relationship. The goal of this paper was to build and

compare MLR and ANN models for the newly syn-
thesised local anaesthetic drugs – derivatives of
phenylcarbamic acid – describing the relationship be-
tween the chemical structure encoded in calculated
theoretical descriptors and thermal parameters
[15–19]. Thermal stability and parameters related to
the melting point and thermal decomposition of new
compounds are important physicochemical proper-
ties. As a result, on the basis of the obtained models
we can predict some thermal parameters for com-
pounds belonging to the same group before synthesis
and without performing DSC analysis.

Experimental

The derivatives of phenylcarbamic acid with local an-
aesthetic and anti-arhythmic activity were analysed.
These compounds were synthesized by Cizmarik and
colleagues at Comenius University in Bratislava.
66 compounds are divided into 5 groups. The samples
labelled BK (19 samples) are a series of
1-ethoxymethyl-2-pirolidyno(or piperidino- or
azepane-) esters of 2-, 3- and 4-alkoxy(tetraoxy- to
heptaoxy-) phenylcarbamic acid [20]. Samples la-
belled V (24 samples) are a series of
1-methyl-2-piperidinoethyl esters of 2-, 3- and
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4-alkoxy(metoxy- to decyloxy-)phenylcarbamic acid
[21]. Samples B (12 samples) are a series of
2-dimethyloesters of 2-, 3- and 4-alkoxy(trioxy- to
decyloxy-)phenylcarbamic acid [22]. Samples A
(5 samples) are a series of 2-piperidinoethylesters of 2-,
3-and 4-alkoxy(trioxy- or hexaoxy)phenylcarbamic acid
[23]. Samples labelled Z (6 samples) are a series of
pirolidynoethylesters of 2-, 3- and 4-alkoxy(metoxy- or
octanoxy)phenylcarbamic acid [24]. All samples (ex-
cept samples labelled BK which are acetates) are hydro-
chloric salts.

DSC

A thermal study using DSC was carried out on
Setaram Setsys TG-DSC 15 equipment. 2 mg samples
were heated from 20 to 500°C at 5°C min–1 in corun-
dum crucibles in nitrogen atmosphere.

Based on the TG and DTG curves, stages of ther-
mal decomposition, mass losses and ranges of tem-
peratures for each stage were determined. Based on
the heat flow curve, temperatures of onset, the maxi-
mum of endothermic peaks and their enthalpy values
were determined.

For all samples the thermal decomposition pro-
ceeds in three or four stages. The first stage is always
connected with desorption of a small amount of ad-
sorbed water (small mass losses observed on TG and
DTG curves), but on the heat flow curve an endother-
mic peak corresponding to the melting of the com-
pound is observed (temperature of onset, maximum of
the melting peak and enthalpy was determined). The
second (in the case of the samples with three steps of
thermal decomposition) or the second and the third
stage (in the case of the samples with four steps of
thermal decomposition) occur with large mass losses
due to the destruction of these organic compounds
(TG and DTG curves), while at the same time a heat
flow curve indicates one or two endothermic effects,
respectively. The last stage of the thermal decomposi-
tion is linked to small mass losses on the TG and DTG
curves; on the heat flow curve no effect is observed.

The samples for which the thermal decomposi-
tion proceeds in four stages are: samples BK (except
sample BK 166); 26V; 28V; 29V; 30V; XXIV Z;
XX B; XXI B; XXIV B; XXV B; XXVI B and
XXVIII B. In the case of samples: BK166;
samples 0-25V; A samples; I Z; II Z; III Z; XXII Z;
XXIII Z, VII B; VIII B; IX B; XIII B; XIV B; XV B
there are three stages of thermal decomposition.

For the interpretation of the recorded curves it
was necessary to select suitable parameters for all
stages. Therefore, the endothermic effects illustrated
by the heat flow curve of each sample required the
designation of the onset (P1o, P2o and P3o), the max-

imum (P1m, P2m and P3m) of the peak temperature
and their enthalpy (P1E, P2E and P3E) (Fig. 1).

Molecular descriptors

The molecular descriptors used consist of 0D, 1D, 2D
and 3D theoretical descriptors [25]. For all molecules
the geometrical structure was optimised using
HyperChem Release 7.0 Professional software. Ge-
ometry optimisation was obtained by the
semiempirical method AM1 (Austin Model 1) using
the Polak-Ribiere conjugate gradient algorithm with
an RMS gradient of 0.01 kcal �

–1 mol–1) as a stop cri-
terion. The Cartesian coordinate matrices of the posi-
tions of the atoms in the molecule were used for the
calculation of 1264 molecular descriptors using
Dragon 5.3 software. The following groups of
descriptors were calculated: constitutional
descriptors, topological descriptors, walk and path
counts, connectivity indices, information indices, 2D
autocorrelations, edge adjacency indices, Burden
eigenvalues, topological charge indices,
eigenvalue-based indices, Randic molecular profiles,
geometrical descriptors, RDF descriptors,
3D-MoRSE descriptors, WHIM descriptors, GET-
AWAY descriptors, functional group counts,
atom-centred fragments, charge descriptors and mo-
lecular properties. Additionally, some QSAR proper-
ties using HyperChem 7.0 were calculated, such as
the approximate solvent accessible surface area, grid
solvent accessible surface area, molecular volume,
refractivity, polarizability and molecular mass. Fur-
thermore, the following energies and gradient calcu-
lated using HyperChem software were added to the
dataset: total energy, binding energy, isolated atomic
energy, electronic energy, Core-Core interaction, heat
of formation and gradient.
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Fig. 1 The example of DSC curve for investigated compounds



Regression models

MLR modelling

Variable reduction consists of selecting a subset of vari-
ables able to preserve the essential information con-
tained in the whole dataset, but eliminating redundancy,
a too highly intercorrelated variable, etc. For variable re-
duction visual inspection of the significant loading plots
obtained by Principal Component Analysis was used.
This is a useful tool to select the most relevant variables
to preserve the most important information contained in
the original data [26, 27]. Using this method, the num-
ber of variables was reduced to about 70 yielding the
most important information [28].

The next step was variable selection in order to
reach optimal model complexity in predicting the re-
sponse variable. Regression models with a few predictor
variables are simple and stable in the statistical sense,
have high predictive power and can be easily inter-
preted. To avoid selection of variables characterised by
chance correlation validation techniques were applied.

Forward selection was used to select a variable.
This technique starts with no variables in the model
and one variable is added at a time until the stopping
criterion is satisfied. The variable considered for in-
clusion at any step is the one yielding the largest sin-
gle degree of freedom F-ratio among the variables eli-
gible for inclusion, and this value is larger than the
fixed value Fin. At each step the j variable is added to
a k-size model if
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where RSS is the residual sum of squares. The subscript
k+j refers to quantities computed when the jth variable is
added to the current k variables already in the model.

Linear regression models were obtained using soft-
ware Statistica 6.0 with calculated statistics: goodness
of fit (coefficient of determination R2, multiple correla-
tion coefficient R, F-ratio, standard deviation errors) and
goodness of prediction. As a validation procedure
cross-validation was applied. 20% of objects excluded
from the dataset make up a testing set and responses for
them were predicted on the basis of the model obtained.
For each model the standard deviation sPRESS (calculated
from PRESS, the sum of the squared errors of these pre-
dictions, divided by the number of degrees of freedom)
was calculated. Outliers were detected by means of a
plot of distribution of residuals.

Artificial neural networks

Artificial neural networks were applied. To select the
number of variables (theoretical descriptors) a genetic

algorithm was used. Genetic algorithms are one of the
most effective optimization methods for problems in-
volving a large number of variables [29, 30]. The
principle of this method is the evaluation of popula-
tion models and is loosely based on the Darwinian
theory of evolution. In the genetic algorithm termi-
nology, the binary vector I is called chromosome,
which is a p-dimensional vector, where each position
corresponds to a variable (one if included in a model,
otherwise zero). Each chromosome represents a
model with a subset of variables [31].

The optimal statistical parameters are defined,
along with the model population P and the maximum
number (L) of allowed variables in the model, the
minimum number of allowed variables is usually
equal to one. Moreover, a cross-over-probability pC

must also be defined by the user.
Once the leading parameters are defined, an al-

gorithm evaluation starts, based on four main steps:

Random initialization of the population

The model population is initially built by random
models with a number of variables between 1 and L,
and then models are ordered with respect to the se-
lected statistical parameters – the quality of the mod-
els – the best model is in the first place, the worst one
at position P.

Crossover step

From the population, pairs of models are selected.
Then, for each pair of models, the common character-
istics are preserved. For a variable included in one
model and excluded from the other, a random number
is tried and compared with the cross-over-probability
pC: if the random number is lower than the
cross-over-probability, the excluded variable is in-
cluded in the model and vice versa. Finally, the statis-
tical parameters for the new models are calculated: if
the parameter value is better than the worst value in
the population, the model is included in the popula-
tion, in the place corresponding to its rank; otherwise
it is no longer considered. This procedure is repeated
for several pairs.

Mutation step

For each step present in the population (i.e. each chro-
mosome), p random numbers are tried, and one at a
time are compared with the defined mutation proba-
bility pM: each gene remains unchanged if the corre-
sponding random number exceeds the mutation prob-
ability; otherwise, it is changed from zero to one and
vice versa. Once the mutated model is obtained, the
statistical parameters for the models are calculated. If
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the parameters value is better than the worst value in
the population, the model is included in the popula-
tion, in the place corresponding to its rank, otherwise
it is no longer considered.

Stop condition

The second and the third steps are repeated until some
stop condition (mutation and crossover coefficients)
is encountered or the process is arbitrarily ended.

It is well known that the genetic algorithm is very
flexible and there may be many variations in the tradi-
tional genetic algorithm. Using software Statistica 6.0
Holland’s genetic algorithm was used with such param-
eters as: population size, 100; maximum number of gen-
erations to execute, 100; mutation coefficient, 0.1;
crossover coefficient, 1.0; sampling, 1; unit pen-
alty, 0.0001. The selection was simulated by a simple
roulette wheel-based scheme. The goodness of fit is the
validation error plus the penalty factor, which is multi-
plied by the number of features considered. The linear
normalization was performed before the selection in
such a way so that the quotient of the best and the worst
fitness is 2:1 in order to find the global optimum. The
assumption in this algorithm is that all strings (with the
exception of the best strings) are completely replaced in
each new generation.

The multilayer perceptrons (MLP) employed in
this study are artificial neural networks with a layered
structure and all connections feeding forwards from
inputs towards outputs (feed-forward neural net-
works) [32, 33]. The best architecture, the number of
layers and the number of neurons in the hidden layers,
training and testing methods were achieved by trial
and error. The logistic function was used as an activa-
tion function. Two supervised learning algorithms
were applied: during the first stage, back propagation
of error and in the second conjugate gradient descent.
In the back-propagation algorithm a series of input
data (e.g. theoretical descriptors after the reduction by
means of the genetic algorithm) and their known re-
lated output (e.g. one of the 9 thermal decomposition
parameters) were presented to the network. The cor-
rection of the masses was made iteratively in epochs
presenting the training set until the obtained output
data were equal to the expected value (target) within a
specified threshold. The learning rate determining the
size of the change in the masses was 0.01 and the mo-
mentum coefficient 0.3. The conjugate gradient de-
scent is a batch update algorithm. The entire training
set is fed through the network and used to adjust the
network masses at the end of the epoch, not after each
case. At the start of the training, the masses were
assigned randomly. Additionally, the neurons with
the smallest masses (<0.05) were removed.

The set of objects was split into three subsets: the
training, validation and testing subset. The training
subset was the largest, the validation and testing con-
sist of 13.6% of all objects chosen randomly. During
network learning, the RMS error of the training subset
is minimized. In order to avoid overtraining, espe-
cially in the case of a small number of objects,
Gaussian noise was added. Objects belonging to the
validation subset are excluded from the training pro-
cess and used in monitoring the progress of the learn-
ing process. The final model was obtained after learn-
ing by means of the training subset and checking by
means of the validation subset is then tested by means
of the testing subset. The objects belonging to the
testing subset were totally excluded from the training
process. To assess the quality of the models the RMS
errors of each subset should be taken into consider-
ation. Equivalence goodness of fit in the linear regres-
sion models in MLP are RMS error for the training
subset and correlation R (Pearson’s correlation coeffi-
cient for real values and obtained as an output value
of a certain model). The equivalence goodness of pre-
diction in linear regression models in the case of MLP
are: the quality of validation, the quotient of standard
deviations, RMS errors for the testing and the valida-
tion subsets.

After building MLP models, the linear models of
artificial neural networks were performed. The inputs
were the same variables (theoretical descriptors) as in
the case of MLP – after the selection by the genetic
algorithm. It was done to compare which function,
linear or nonlinear, better reflects the relationship be-
tween variables. Artificial neural networks with the
linear activation function do not have any hidden lay-
ers. Other parameters of training were the same as in
the case of MLP.

Results and discussion

MLR analysis

Among the descriptors, the most significant theoretical
molecular descriptors after the reduction using PCA
were identified by means of the multiple linear regres-
sion analysis with a stepwise forward selection method.

The equations obtained for the first endothermic
peak (the onset – P1o, the maximum temperature of
the peak – P1m and the enthalpy of the process – P1E,
respectively) are:

logP1o=19.4369(�9.1540)AROM+
4.7909(�2.9531)R5m++
0.7634(�0.2932)PJI3 –17.6652(�8.9723

logP1m=13.6576(�3.8972)RTp++
12.2228(�5.4109)AROM+8.0574(�2.2330)R3m++
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3.0272(�1.8575)R7m++0.5773(�0.2951)HATS0m+
0.04662(�0.4100)E1e+0.2048(�0.1437) Mor20v–

1.9779(�0.4611)H0p–22.2319(�7.0304)R2v+–
8.3794(�5.2235)

logP1E=0.8525(�0.7550) MATS8v+
0.3905(�0.2773) PJI3+1.6118(�0.2179)

One outlier was detected in the case of each
equation by means of a plot of distribution of residu-
als – sample BK166. The equations obtained for the
second endothermic peak after the outlier – sam-
ple BK166 – had eliminated (the onset – P2o, the
maximum temperature of the peak – P2m and the
enthalpy of the process – P2E, respectively) are:

logP2o=1.6702
�0.4540)BEHm2+
1.3954
�0.4087)X4Av+0.7488(�0.5193)+R3u++
0.1821(�0.0581)H8m+0.1119(�0.0693)GATS7v+
0.1097(�0.0233) HATS0m+
0.1018(�0.0777)MATS8p+
0.0279(�0.0130G(N..N)+
0.0268(�0.0148) Mor27u–0.4397(�0.0896)Dm–
4.3531(�1.7055)

logP2m=2.4958(�0.4108) R2u++
0.5761(�0.2604)R2m++
0.2162(�0.0581) H8m+0.1833(�0.0534)GATS4m+
0.0392(�0.0116)G(N..N)+
0.0092(�0.0080)Psychotic-80–
2.0268(�0.2852)R2e++1.9093(�0.0767)

logP2E=0.4484(�0.1238) Inflammat-80
+0.2204(�0.1435) Mor15u+2.3209(�0.1014)

The equations obtained for the third endothermic
peak after the outlier – sample IZ – had been elimi-
nated (the onset – P3o, the maximum temperature of
the peak – P3m and the enthalpy of the process – P3E
respectively) are:

logP3o=10.4894(�6.5234)BEHm3+
0.2477(�0.0721) RBN–32.2997(�21.8304)

logP3m=10.5214(�6.5535) BEHm3+
0.2495(�0.0725)RBN–39.4280�21.9311

logP3E=9.4069(�5.7086) BEHm3+
0.1914(�0.0631) RBN–35.0422(�19.1035)
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Table 1 Statistical parameters for MLR models

Thermal parameters R R2 s F FD sPRESS

P1o 0.5820
0.6865

0.3387
0.4713

0.3473
0.1278

7.8118
18.127

4.61
3.61

0.2280
0.1086

P2o 0.5258
0.9727

0.2765
0.9462

0.3562
0.0107

7.8992
94.909

3.62
10.54

0.1086
0.0149

P3o 0.8060
0.8627

0.6497
0.7443

1.0127
0.8667

58.424
90.231

2.63
2.62

0.9188
0.8827

P1m 0.4837
0.8961

0.2340
0.8030

0.3587
0.6551

9.6231
24.916

2.63
9.55

0.8827
0.0548

P2m 0.4500
0.9628

0.2025
0.9270

0.3768
0.1292

7.9967
103.44

2.63
7.57

0.2479
0.0117

P3m 0.8065
0.8630

0.6394
0.7448

1.0174
0.8707

58.622
90.500

2.63
2.62

0.9211
0.8844

P1E 0.4867
0.4408

0.2369
0.1943

0.3407
0.1202

9.7779
7.4759

2.63
2.62

0.3110
0.1058

P2E 0.6662
0.7332

0.4439
0.5376

0.4169
0.2391

12.172
36.039

4.61
2.62

0.3592
0.2507

P3E 0.7892
0.8446

0.6228
0.7042

0.8682
0.7585

52.017
77.175

2.63
2.62

0.6808
0.6388
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Fig. 2 Contribution of descriptors in MLR and MLP models



The statistical parameters for all equations are
shown in Table 1.

Using this comparison of statistical parameters
we can stay that the best models were: P2m and P2o.
The values of R2 (0.9270 and 0.9462, respectively)
and F values (103.44 and 94.909, respectively) indi-
cate the best fit among all the models. The values of
sPRESS (0.0117 and 0.0149, respectively) indicate
goodness of prediction.

There is a different number of descriptors in
these models. Only models describing the third peak
connected with thermal decomposition are three-pa-
rameter models. The contribution of descriptors in
MLR models is shown in Fig. 2. The selected

descriptors in large numbers are: GETAWAY,
3D-MoRSE, geometrical descriptors, Burden
eigenvalue descriptors and WHIM descriptors. All
these descriptors (except Burden eigenvalue
descriptors which are 2D) are derived from the
three-dimensional structure of the molecule. Geomet-
rical descriptors are commonly known as topographic
indices and are calculated from the graphical repre-
sentation of molecules but using geometric distances
between atoms instead of the topological distances.
WHIM descriptors (Weighted Holistic Invariant Mo-
lecular descriptors) are geometrical descriptors based
on statistical indices calculated from the projections
of atoms along principal axes. They are built in such a

208 J. Therm. Anal. Cal., 91, 2008

KLOS et al.

Table 2 Descriptors in MLR models

Descriptor Definition
Descriptor class
(%contribution of the class)

R5m+ R maximal autocorrelation of lag 5/weighted by atomic masses GETAWAY (35.9%)

RTp+ R maximal index/weighted by polarizabilities

R3m+ R maximal autocorrelation of lag 3/weighted by atomic masses

R7m+ R maximal autocorrelation of lag 7/weighted by atomic masses

R2v+ R maximal autocorrelation of lag 2/weighted by atomic van der Waals volumes

R2u+ R maximal autocorrelation of lag 2 / unweighted

R2m+ R maximal autocorrelation of lag 2 / weighted by atomic masses

R2e+ R maximal autocorrelation of lag 2 / weighted by atomic Sanderson
electronegativities

R3u+ R maximal autocorrelation of lag 3 / unweighted

H8m H autocorrelation of lag 8 / weighted by atomic masses

HATS0m Leverage-weighted autocorrelation of lag 0/weighted by atomic masses

H0p H autocorrelation of lag 0/weighted by atomic polarizabilities

MOR20v 3D-MoRSE signal 20/weighted by atomic van der Waals volumes 3D-MoRSE (7.7%)

MOR27u 3D-MoRSE signal 27 / unweighted

Mor15u 3D-MoRSE signal 15 / unweighted

MATS8v Moran autocorrelation lag 8/ weighted by atomic van der Waals volumes 2D Autocorrelation

MATS8p Moran autocorrelation lag 8 / weighted by atomic polarizabilities (10.2%)

GATS4m Geary autocorrelation lag 4 / weighted by atomic masses

GATS7v Geary autocorrelation lag 7 / weighted by atomic van der Waals volumes

E1e 1st component accessibility directional WHIM index /weighted by atomic
Sanderson electronegativities

WHIM (5.2%)

Dm D total accessibility index / weighted by atomic masses

PJI3 Petitjean shape index Geometrical

G(N..N) Sum of geometrical distances between N..N (10.2%)

Psychotic-80 Ghose-Viswanaghan-Wendolowski antipsychotic at 80% Drug-like

Inflammat-80 Ghose-Viswanaghan-Wendolowski antiinflammatory at 80% (5.2%)

BEHm2 Highest eigenvalue n.2 of Burden matrix/weighted by atomic masses Burden eigenvalue

BEHm3 Highest eigenvalue n.3 of Burden matrix/weighted by atomic masses (10.2%)

AROM Aromacity index Constitutional

RBN Number of rotatable bonds (12.8%)

X4Av Average valence connectivity index chi-4 Connectivity (2.6%)



way so as to capture relevant molecular 3D informa-
tion regarding molecular size, shape, symmetry and
atom distribution with respect to invariant reference
frames. The GETAWAY (GEometry, Topology, and
Atom-Weights AssemblY) descriptors have been re-
cently proposed as chemical structure descriptors
derived from a new representation of molecular
structure, the Molecular Influence Matrix (MIM).

3D-MoRSE (3D-Molecule Representation of
Structures based on Electron diffraction) descriptors
are based on the idea of obtaining information from
the 3D atomic coordinates by the transformation used
in electron diffraction studies for preparing theoreti-
cal scattering curves. All descriptors used in MLR
models are shown in Table 2. In general, the 3D
descriptors can add valuable information to the mod-
els. It can be concluded that the geometrical proper-
ties of a molecule play a major role in the thermal de-
composition of the investigated compounds. Because
most of the models include many descriptors belong-
ing to different blocs of descriptors, it is very difficult
to state which of them considerably influence thermal
decomposition.

The multilayer perceptrons (MLP) obtained after
selection by means of the genetic algorithm were arti-
ficial neural networks with a layered structure. There
is a different number of inputs and one or rarely two
hidden layers with different number of neurons. The
output is always one, one of the thermal parameters.
The architectures of the obtained MLP models and
the values of goodness of fit and prediction are shown
in Table 3. The RMS errors for testing sets have val-
ues from 0.10 to 0.50 in all models. The values for the
RMS error of the validation set vary. On the basis of
the values of correlation R and RMS errors for train-
ing sets, we can state that the best models are P3o and
P3E. Taking into consideration the values of RMS er-
rors for testing sets, the quality of validation and the
quotient of standard deviations, we can state that the
models with the best predictive power are models P2o
and P1m. But the high values of RMS errors for vali-
dation sets in these models, in comparison with other
models, decrease the quality of the models obtained.
As we can see, not always do the MLP models with a
good predictive power have favourable values of
goodness of fit and vice versa.
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Table 3 Statistical parameters for MLP models

Thermal
parameter

Architecture
(input:hidden
layer:output)

RMSE of
training

RMSE of
validation

RMSE of
testing

Quality of
validation

Quotient of
standard
deviation

Correlation R

P1o 14:14-26-1:1 0.200047 1.058804 0.174822 0.900026 0.896618 0.442805

P2o 7:7-6-1:1 0.143458 7.240020 0.147026 0.972441 0.968661 0.349920

P3o 6:6-57-16-1:1 0.215974 0.286372 0.358701 0.583952 0.509280 0.860611

P1m 11:11-36-1:1 0.171843 1.599036 0.163821 0.962817 0.940619 0.339815

P2m 20:20-7-1:1 0.230894 7.474009 0.242629 0.971847 0.968739 0.333679

P3m 12:12-25-1:1 0.283215 0.265903 0.327617 0.541053 0.588172 0.808741

P1E 10:10-40-1:1 0.521268 1.558770 0.507898 0.910662 1.149848 0.215687

P2E 2:2-53-18-1:1 0.302590 0.865671 0.327639 0.898940 0.890506 0.461233

P3E 7:7-28-1:1 0.139923 0.218448 0.357674 0.408295 0.436268 0.899817

Table 4 Statistical parameters for linear MLP models

Thermal
parameter

Architecture
(input:hidden
layer:output)

RMSE of
training

RMSE of
validation

RMSE of
testing

Quality of
validation

Quotient of
standard
deviation

Correlation R

P1o 14:14-1:1 0.148772 1.135043 0.076587 0.960643 0.910822 0.426452

P2o 7:7-1:1 0.142315 7.264731 0.161471 0.976155 0.972079 0.319603

P3o 6:6-1:1 0.255881 0.332012 0.452602 0.679152 0.612108 0.796950

P1m 11:11-1:1 0.133843 1.602268 0.112721 0.955982 0.924589 0.391110

P2m 20:20-1:1 0.048649 7.576125 0.061248 0.977885 0.972966 0.301141

P3m 12:12-1:1 0.868899 0.905274 0.964592 1.731633 1.803086 0.318188

P1E 10:10-1:1 0.158889 1.684620 0.336403 0.993472 0.986841 0.161723

P2E 2:2-1:1 0.220540 0.918225 0.356451 0.907076 0.891769 0.454691

P3E 7:7-1:1 0.211014 0.279716 0.417907 0.554612 0.589754 0.807728
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Table 5 Descriptors in MLP models

Descriptor Definition
Descriptor class (%
contribution of the
class)

ESpm03u/05r Spectral moment 03 from edge adj. matrix /spectral moment 05 from
edge adj. matrix weighted by resonance integrals edge

Edge adjacency ind.
2.3%

BELv1/BELm4/BELp5 Lowest eigenvalue n. 1 of Burden matrix weighted by atomic van der
Waals volume/lowest eigenvalue n. 4 of Burden matrix weighted by
atomic van der Waals volume/lowest eigenvalue n.5 weighted by
atomic polarizabilities

Burden eigenvalue
4.5%

BEHm5 Highest eigenvalue n. 5 of Burden matrix weighted by atomic masses

VEA2 Average eigenvector coefficient sum from adjacency matrix Eigenvalue-based
ind.1.1%

RCI Jug RC index Geometrical 6.7%

ASP Asphericity

DISPe d COMMA2 value/ weighted by atomic Sanderson
electronegativities

RDF 100u/150u Radial Distribution Function – 10/15/unweighted RDF 23.6%

080m/125m 0.80/12.5/weighted by atomic masses

020p/055p/110p/145p/155p 2.0/5.5/11.0/14.5/15.5/weighted by atomic polarizabilities

060v/065v/100v/150v/155v 6.0/6.5/10.0/15.0/15.5/weighted by atomic van der Waalsa volume

020e/085e/125e/135e/155e 2.0/8.5/12.5/13.5/15.5/weighted by atomic Sanderson
electronegativities

Mor04u/18u/29u 3D-MoRSE-signal 04/18/29/unweighted 3D MoRSE 11.2%

Mor10p/25p 3D-MoRSE-signal 10/25/weighted by atomic polarizabilities

Mor17e 3D-MoRSE-signal 10/weighted by atomic Sanderson
electronegativities

Mor11m/20m/26m/28m 3D-MoRSE-signal 11/20/26/28/weighted by atomic masses

R6u+/8u+ R maximal autocorrelation of lag 6/8/unweighted GETAWAY 15.7%

R8e R autocorrelation of lag 8/ weighted by atomic Sanderson
electronegativities

R2e+/5e+ R maximal autocorrelation of lag 2/ 5/weighted by atomic Sanderson
electronegativities

RTe+ R maximal index/ weighted by atomic Sanderson electronegativities

R5m+ R maximal autocorrelation of lag 5/weighted by atomic masses

HATS0m/4m Leverage-weighted autocorrelation of lag 0/4/ weighted by atomic
masses

HATS3e Leverage-weighted autocorrelation of lag 3/weighted by atomic
Sanderson electronegativities

HATS0p/1p Leverage-weighted autocorrelation of lag 0/1/weighted by atomic
polarizabilities

MATS1m/2m Moran autocorrelation lag 1/2/ weighted by atomic masses Autocorrela tion 5.6%

MATS4e Moran autocorrelation lag 4/ weighted by atomic electronegativities

MATS2v Moran autocorrelation lag 2/ weighted by atomic van der Waals
volumes

MATS2p Moran autocorrelation lag 8/ weighted by atomic polarizabilities

Psychotic-50/80 Ghose-Viswanadhan-Wendolowski: antipsychotic at 50/80% Drug-like 9.0%

Neoplastic-50 antineoplastic at 50%

Hypertens-80 antihypertensive at 80%

Hypnotic-80 hypnotic at 80%

Infective-80 antiinfective at 80%

GVWAI-80 alert index at 80%



In order to verify whether the linear function can
better reflect the relationship between the thermal pa-
rameters (output) and theoretical descriptors (inputs)
selected by means of the genetic algorithm, linear
models of artificial neural networks were tested.
These are models without any hidden layers and the
inputs are the same as in the case of MLP models. The
statistical parameters for linear models of MLP are
shown in Table 4. In nearly all cases, the values of
correlation R indicate the weakness of obtained mod-
els as regards the goodness of fit. Mostly, the values
of RMS errors of training and testing sets are slightly
better for linear models than in nonlinear models. One
exception is models describing the third process of
thermal decomposition (the third peak on the DSC
curve). In the case of models: P3o, P3m and P3E the
indices of goodness of fit and goodness of prediction
are worse in linear models.

Comparing linear and nonlinear MLP models,
we can observe that the values of RMS errors of three
subsets – training, validation and testing – are not in
the same order. Especially the values of RMS errors
of validation sets are high. This might result from un-
equal contribution of samples belonging to different
groups: BK, V, A, Z and B to certain subsets. It partic-
ularly concerns the groups A and Z. These groups
contain only 5 and 6 compounds and because of this,
the compounds are not included in each subset. As a
result, we obtained models with doubtful quality.

The contribution of descriptors in MLP models
are shown in Fig. 2. The selected descriptors (Table 5)
in large numbers are: RDF, GETAWAY, WHIM,
3DMoRSE and geometrical. RDF descriptors are
based on a radial distribution function, which is de-

scribed as a probability distribution of finding an
atom in the spherical volume of radius R. The other
descriptors are described in short in the previous sec-
tion (MLR models).

Conclusions

The aim of this work was to build QSPR models de-
scribing the relationship between thermoanalytical pa-
rameters and chemical structure of investigated esters of
phenylcarbamic acid. A thermal study using DSC for
each compound was carried out. Using the DSC curve, 9
thermal parameters were calculated. To build the QSPR
models, multiple linear regression and Artificial Neural
Networks were applied. The chemical structure was en-
coded in the calculated theoretical descriptors. The vari-
able reduction was performed by means of visual in-
spection of the significant loading plots obtained by
Principal Component Analysis, but the selection using
forward selection. For each thermal parameter, MLR
models were calculated with certain indices of goodness
of fit and goodness of prediction. The best MLR models
are: P2o and P2m.

Two models of Artificial Neural Networks were
built, linear and nonlinear, in order to find out which
function better describes the relationship between
variables. But in the case of ANN for reduction the
variables, the genetic algorithm was applied. The re-
sults are ambiguous. By far the best MLP models
were derived for thermal parameters describing the
third peak on the DSC curve: P3o, P3m and P3E. But
in the case of other models the nonlinear ANN models
have better indices of goodness of fit than linear ANN
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Table 5 Continued

RNCG Relative negative charge Charge descript. 3.4%

TE1 Topological electronic descriptor

Q2 Total squared charge

GGI6 Topological charge index of order 6 Topological charge
ind. 1.1%

E3s 3rd component accessibility directional WHIM index/ weighted by
atomic electrotopological states

WHIM 1.1%

SRW05/09 Self-returning walk count of order 5/9 Walk and path counts
2.3%

X0A/X2A Average connectivity index chi-0/chi-2 Connectivity 1.1%

D/Dr07 Distance/detour ring index of order 7 Topological 2.3%

CIC5 Complementary information content Information 1.1%

C-005 CH3X atom-centred fragments Atom centred fragm.
1.1%

nR05/07 Number of 5/7-membered rings Constitutional 5.6%

x4sol Salvation connectivity index chi-4

Bind.E Energy of binding Quant.-chem d. 1.1%



models, but very often worse indices of goodness of
prediction. For the thermal parameters describing the
first and the second process of thermal decomposition
MLR models with assumed linear relationship be-
tween thermal parameters and chemical structure of
investigated compounds can be recommended.
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